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Abstract. Exact error bounds to the Bohr–Sommerfeld quantization formula are derived
without a priori assuming quantum numbers to be large. The assessments are expressed in
terms of asingle quantity, the error-control integral, which is determined by the potentialU(x)

in a unique fashion as a function of a particle’s total energy. While taken over the real axis,
the integral has the advantage of being suitable for analytical investigation. Exact sufficient
conditions are established for the Bohr–Sommerfeld formula to be extendible to the range of
lower quantum numbers.

1. Introduction

The Bohr–Sommerfeld quantization formula is widely used in physics. Its significance
is not limited to the specific problem for which it was originally derived, namely, that
of determining the energy levels of a particle in a potential well. The formula plays an
essential role in the foundations of the theory of quantum fields, solitons, and instantons
[1]. It is used in the theory of chemical reactions [2] for evaluating resonance phase shifts
in molecular orbiting collisions. This quantization formula provides a starting point for
the derivation of the Onsager–Lifshitz relations, which play the key role in the theory of
magneto-oscillatory phenomena in metals at low temperatures [3]. In quantum mechanics,
new approaches to specific problems are based on the Bohr–Sommerfeld formula [4].

The importance of the Bohr–Sommerfeld formula appears in a new light due to recent
advances in nanotechnologies [5], which have given rise to a general increase of interest in
quantum processes occurring at nanoscales. New designs are needed to ensure the reliable
functioning of all components of nanodevices at such dimensions, when quantum features
of electron motion come to be essential. That is why the need for better fundamental
understanding of quantum transport phenomena has become urgent [6, 7]. However, a
reliable kinetic theory, which is applicable to the nanometer regime, may be developed only
on the basis of an accurate mathematical description of basic quantum effects. In view of
the fact that exact solutions are not possible except for a few simplest cases, the need for
approximate methods with controlled accuracy is now clearly realized [4, 7].

According to a widely accepted point of view, the Bohr–Sommerfeld quantization
formula is valid only for large quantum numbersn � 1. Really, rigorous mathematical
theorems [8–10] have established the fact that the error termδn, by which the Bohr–
Sommerfeld formula differs from an exact equation, vanishes asn → ∞. It should be
noted, however, that those theorems are based on an essential premise that the potential
U(x) increasesunboundedlyas |x| → ∞. Besides, those theorems result only in relations
that are asymptotic in their nature, i.e. they establish the proof forδn to be some kind of
O-term asn → ∞. The theorems provide no indication as to the error bounds forδn.
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It was, however, noticed long ago that the actual accuracy of the Bohr–Sommerfeld
formula is much higher than one would expect in view of the restrictions due to the
method used for its derivation. There are many indications that, in fact, this formula
might be extended, under certain conditions, to the range of lower quantum numbersn.
Indeed, as is well known, in some problems (hydrogen atom, harmonic oscillator) the Bohr–
Sommerfeld formula yields exact results for all positive integersn, starting with the smallest
ones. In many other problems, numerical investigation shows the relative errors associated
with the Bohr–Sommerfeld formula to be surprisingly small even forn ∼ 1. Thus, for
instance, numerical evaluations [11, 12] of energy levels of an anharmonic oscillator, which
is described by a potentialU(x) = ω2x2 + λx4, showed that even in the strong-coupling
limit (λ � ω2), the values produced by the Bohr–Sommerfeld formula are incorrect by 1%
or less for all levels except for the ground state which is off by about 22%.

The first proof for the fact that the Bohr–Sommerfeld formula is applicable, under
certain conditions, to the lower energy levels was given by Birkhoff [13]. An independent
derivation of Birkhoff’s assessments was made by Kemble [14, 15] within the framework
of the phase-integral method. According to calculations performed by Kemble [14] for the
normal state of the H2 molecule, described by the Morse potential, the Bohr–Sommerfeld
formula yields the energy value that is correct to one-third of a per cent of the spacing of
adjacent energy levels. Further developments of this method were discussed in references
[2, 10, 16, 17].

The assessments of the error bounds to the Bohr–Sommerfeld formula, as obtained by
the phase-integral method, necessitate a search for optimal paths in the complex plane which
provide minimum values to certain integrals of rather complicated functions. This cannot be
done without taking into account the detailed analytic structure of the potentialU(x) which
is often found to be rather complicated. For this reason, the assessments of that kind, while
suitable for numerical evaluations with respect to a given particular potential, are difficult
to use when one is interested in analytical investigation. Indeed, the question of particular
interest is most often not that about a number. The problem resides rather in establishing
sufficient conditions, formulated in terms of parameters associated with the potentialU(x),
for the error terms to be negligible. Besides, application of the phase-integral method is
restricted only to potentials that admit of analytic continuation from the real axis into the
complex plane. In view of the importance of the problem, and its complexity, a satisfactory
solution may be found only by combining different approaches, thus putting to use the
advantages of every one of them.

Some useful information on the accuracy of the Bohr–Sommerfeld formula may also be
obtained by investigating higher-order correction terms as obtained within the phase-integral
method [12, 18]. However, the first terms of an infinite series do not always provide the
right impression about the behaviour of the series as a whole. A reliable assessment for
the sum of the series as a whole is needed in general. The problem is too complicated to
expect simple solutions.

The phase-integral method is not the only possible way of obtaining proper assessments.
In reality, it is not so difficult to derive an upper bound to the error terms related to the Bohr–
Sommerfeld formula. The fact is that an estimated upper bound to the error isinevitably
found to be greater than the actual error. This feature is inherent in the very nature of such
estimations. The main problem thus consists not so much in derivingany kind of upper
bound, but rather in obtaining thelowest possibleupper bound to the error terms involved
with the use of the Bohr–Sommerfeld formula. Advances in the theory of asymptotic
solution of linear differential equations of the second order [10, 19] provide appropriate
means for handling the problem. In the fundamental work by Olver [19], a rigorous proof
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was obtained for the fact that, under certain conditions, the Bohr–Sommerfeld formula is
valid uniformly with respect to all non-negative integer values of the quantum number
n ∈ [0, nm], provided the Schr̈odinger equation contains a large (unspecified) parameter
u, wherenm ∼ u � 1 (consider the last paragraph of section 6.4 on p 162 along with
the formula (2.5) in [19]). However, final results were written in [19] only as asymptotic
relations. Explicit error bounds for the correction terms have not been obtained.

In the present paper, the assessments of the error terms associated with the Bohr–
Sommerfeld formula are derived without anya priori restriction upon the quantum numbers
n. The derivation is based on Olver’s theory [10, 19]. This method is known to produce the
best results as to establishing the lowest possible upper bounds for the correction terms in
asymptotic expansions. The final assessment (4.100) obtained below for the error term to the
Bohr–Sommerfeld formula is expressed in terms of theerror-control integral E(n) (3.89),
which is takenover the real axisand depends on a real, continuous, and strictly increasing
functionξ = ξ(x) (equations (3.50a–c). The functionξ(x) is completely determined by the
potentialU(x). It defines a one-to-one mapping of the realx axis onto the corresponding
ξ axis. This mapping, and its properties, make the point of the ensuing analysis.

The integral E(n) is found to be well suited for analytical investigations of sufficient
conditions for the Bohr–Sommerfeld formula to be extended to the range of lower quantum
numbers. Due to the scaling symmetry of the expression (3.89), the properties of E(n),
as a function of parameters associated with the potentialU(x), may easily be established.
Furthermore, modern computing facilities make the evaluation of remaining numbers of the
order of unity not too difficult.

In section 2, fundamental solutions of the Weber equation are specified and related
auxiliary functions are investigated. Our approach to an approximate solution of the bound-
state problem is discussed in section 3. The exact equation for the energies of the bound
states is written in section 4, along with sufficient conditions under which this equation
reduces to the Bohr–Sommerfeld quantization formula. A comparison with the known exact
solution of the bound-state problem for the finite-range potentialU(x) = −|U0|/ cosh2(x/ l)
is made in section 5. Connection to the WKB approximation is discussed in section 6.
Conclusions and comparison with reference [19] are given in section 7. Throughout the
paper we use units with ¯h = 1.

2. Fundamental solutions of the Weber equation

2.1. Specification of fundamental solutions

Let us consider the Weber equation

d2w

dx2
+ (ν + 1

2 − 1
4x

2)w = 0 (2.1)

on the real axisx ∈ (−∞,+∞), with a real parameterν > −1/2. As a fundamental pair
of solutions to equation (2.1) we take the functionswν(x) anduν(x) defined by

wν(x) =
(π

2

)1/4
0−1/2(ν + 1)Dν(x) (2.2)

uν(x) = 01/2(ν + 1)

23/4π1/4
[e−iπ(ν+1)/2D−ν−1(−ix)+ eiπ(ν+1)/2D−ν−1(ix)] (2.3)

where0(z) is the gamma function andDν(z) is the standard designation for the parabolic
cylinder functions [20, p 323]. In this section we give a summary of important properties
of the functionswν(x) anduν(x) that are essential for subsequent proofs. All the following
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relations are obtainable from the known properties of the parabolic cylinder functions [20,
ch VIII].

The Wronskian of the functionswν(x) anduν(x)

W {wν(x), uν(x)} = wν(x)u
′
ν(x)− uν(x)w

′
ν(x) = 1 (2.4)

is identically equal to unity so the functions (2.2) are linearly independent for allν > −1/2.
The connection formulae for the functionswν(x) anduν(x) reduce to simple relations.

For everyν > −1/2 and any realx ∈ (−∞,+∞) we find

wν(−|x|) = wν(|x|) cosπν − uν(|x|) sinπν

uν(−|x|) = −wν(|x|) sinπν − uν(|x|) cosπν.
(2.5)

The Taylor series expansions for the functionswν(x) anduν(x),

wν(x) = 2ν/20−1/2(ν + 1)

(2π)1/4
ex

2/4
∞∑
n=0

(−1)n

n!

(
x
√

2
)n
0

(
1 + n+ ν

2

)
cos

[
π(ν + n)

2

]
uν(x) = −2ν/20−1/2(ν + 1)

(2π)1/4
ex

2/4
∞∑
n=0

(−1)n

n!

(
x
√

2
)n
0

(
1 + n+ ν

2

)
sin

[
π(ν + n)

2

] (2.6)

are convergent for all finitex.
For any fixedν > −1/2, the functionwν(x) exponentially decreases, whereas the

functionuν(x) exponentially increases asx → +∞.

wν(x) ∼
(π

2

)1/4
0−1/2(ν + 1)e−x2/4xν (x → +∞)

uν(x) ∼
(

2

π

)1/4

01/2(ν + 1)ex
2/4x−ν−1 (x → +∞).

(2.7)

On the other hand, uniform asymptotic representations for the functionswν(x) anduν(x),
for largeν, are found to be

wν(x) ∼ √
π

[
ζ(x)

1
4x

2 − ν − 1
2

]1/4

Ai(ζ ) (ν � 1, x > 0)

uν(x) ∼ √
π

[
ζ(x)

1
4x

2 − ν − 1
2

]1/4

Bi(ζ ) (ν � 1, x > 0)

(2.8)

whereζ = ζ(x) while Ai(ζ ) and Bi(ζ ) are the Airy functions. The functionζ(x) in the
expressions (2.8) is a continuous even function on the whole of the real axis. On the
interval [0,+∞) (i) ζ(x) is strictly increasing, (ii)ζ(x) has a single zero at the point
x = 2

√
ν + 1/2, (iii) ζ(x) has a continuous derivative, (iv)ζ(x) has the values determined

by

2
3[−ζ(x)]3/2 =

∫ 2
√
ν+1/2

x

dx

(
ν + 1

2
− x2

4

)1/2

0 6 x 6 2(ν + 1
2)

1/2

2
3[ζ(x)]3/2 =

∫ x

2
√
ν+1/2

dx

(
x2

4
− ν − 1

2

)1/2

2(ν + 1
2)

1/2 6 x < +∞

ζ(−x) = ζ(x) ζ ′(−x) = −ζ ′(x) ζ(0) = −
[

3π

4

(
ν + 1

2

)]2/3

.

(2.9)

The precision of the uniform asymptotic representations (2.8) is found to be remarkably
high. Even forν ∼ 1 the relative error associated with the asymptotic formulae (2.8) does
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Figure 1. Functionwν(x) (full curve) and its uniform approximation (broken curve). The
approximate values have been calculated by use of the uniform asymptotic representations (2.8)
along with the connection formulae (2.5). The graphs are plotted forν = 0.7. Inset: Difference
between the exact values of the functionwν(x) and its approximate values, plotted as a function
of x.

not exceed a few per cent. To give an idea of the high precision of the formulae (2.8), the
graph of the functionwν(x) is plotted in figure 1 forν = 0.7 as a full curve. The broken
curve in the figure represents the approximate values ofwν(x) as obtained from (2.8) along
with (2.5). The difference between the two curves is hardly discernible in figure 1 so it is
also plotted in the inset to figure 1, on being appropriately scaled.

The asymptotic behaviour of the functionswν(x) anduν(x) on the negative real axis
is readily derived from equations (2.7) or (2.8) by use of the connection formulae (2.5).
The graphs ofwν(x) (full curve) anduν(x) (broken curve), forν = 4.1, are plotted in
figure 2. The approximate values of the functionwν(x), for the sameν = 4.1, have also
been calculated by using the asymptotic forms (2.8) along with the connection formulae
(2.5). Those approximate values are represented by the chain curve in figure 2. This latter
curve is, however, not distinguishable from the full curve in figure 2 since the deviation of
the exact values from the approximate ones does not exceed 6× 10−3 in the investigated
range|x| 6 6. To make it visible, this deviation is plotted on the proper scale in the inset
to figure 2 as a function ofx, for wν(x) with ν = 4.1. The figure provides still another
illustration for the high precision of the asymptotic formulae (2.8). This fact is to be kept in
mind when considering the real meaning of the formal conditionν � 1, which determines
the validity of the asymptotic formulae (2.8).

2.2. Auxiliary functions related towν(x) anduν(x)

2.2.1. Interval0 6 x < +∞. To establish the required error bounds for correction terms
considered below, the assessments of the functionswν(x) and uν(x) are needed. Let us
first consider the positive real axisx > 0. Following reference [19, section 5], for every
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Figure 2. Functionswν(x) (full curve) anduν(x) (broken curve). The graphs are plotted for
ν = 4.1. Also there is a chain curve that represents approximate values of the functionwν(x),
for the sameν = 4.1, which were calculated by using the asymptotic forms (2.8) along with
the connection formulae (2.5). This chain curve is, however, not distinguishable from the full
curve. Inset: Deviation of the exact values of the functionwν(x) from its approximate values,
plotted as a function ofx.

ν > −1/2 we introduce amodulus functionMν(x), phase functionθν(x), and weight
functionEν(x), related by

wν(x) = Mν(x)

Eν(x)
cosθν(x) uν(x) = Mν(x)Eν(x) sinθν(x). (2.10)

For x > 0, the functionEν(x) is defined in accordance with [19, section 5]

Eν(x) = 1 (0 6 x 6 cν)

Eν(x) =
[
uν(x)

wν(x)

]1/2

(cν 6 x < +∞)
(2.11)

wherex = cν is the greatest positive root of the equation (cf figure 2)

wν(x) = uν(x). (2.12)

The parametercν is a positive and monotonically increasing function ofν > −1/2 (cf [19,
section 5]). Atν = 0, c0 = 1.034 776 (correct to six decimal places), andcν tends to zero
asν → −1/2+. From (2.6) we find

cν ∼ 1
40

2( 1
4)(ν + 1

2) (ν → −1/2+). (2.13)

All the zeros of the functionswν(x) anduν(x) may be shown to lie to the left ofcν . On
the positive real axisEν(x) is a non-decreasingfunction of x which is not less than unity
[19].
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With the definition (2.11), equations (2.10) yield

Mν(x) =


√
w2
ν(x)+ u2

ν(x) (0 6 x 6 cν)√
2wν(x)uν(x) (cν 6 x < +∞)

(2.14)

and

θν(x) = π

4
−

∫ cν

x

dx

M2
ν (x)

(0 6 x 6 cν)

θν(x) = π

4
(cν 6 x < +∞).

(2.15)

In particular, substituting (2.6) in (2.14), we find

Mν(0) = 2ν/2

(2π)1/401/2(ν + 1)
0

(
1 + ν

2

)
. (2.16)

The asymptotic behaviour of the functionsEν(x) andMν(x), with ν > −1/2 being
fixed while x → +∞, is obtained from (2.7)

Eν(x) ∼
(

2

π

)1/4

01/2(ν + 1)ex
2/4x−(ν+1/2) x → +∞ (2.17)

Mν(x) ∼
√

2

x
x → +∞. (2.18)

On the other hand, uniform asymptotic representations forEν(x) andMν(x), asν � 1 and
x > 0 being fixed, may be obtained from (2.11) and (2.14) by using (2.8). First we notice
that, for ν � 1, the rootx = cν of equation (2.12) is asymptotically given bycν ∼ xc,
wherexc is determined from the equation (cf [10, p 395])

ζ(xc) = c = −0.366 046 (2.19)

with ζ(x) defined by (2.9). Thus we obtain, forν � 1 andx > 0,

Eν(x) ∼ E(ζ ) (2.20)

Mν(x) ∼ √
π

[
ζ(x)

1
4x

2 − ν − 1
2

]1/4

M(ζ ) (2.21)

θν(x) ∼ π

2
−2(ζ) (2.22)

with ζ ≡ ζ(x), whereas E(x), M(x), and2(x) are the auxiliary functions introduced in
reference [10, p 394] as related to the Airy functions.

For everyν > −1/2, we associate with the functionMν(x) an important positive number
σν defined by

σν = sup
x∈[0,+∞)

[∣∣∣∣x2

4
− ν − 1

2

∣∣∣∣1/2

M2
ν (x)

]
. (2.23)

In view of the asymptotic relation (2.18) forMν(x), we find for every fixedν > −1/2

lim
x→+∞

[∣∣∣∣x2

4
− ν − 1

2

∣∣∣∣1/2

M2
ν (x)

]
= 1. (2.24)
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Figure 3. Parametersσν (full curve) andµν (broken curve) as functions ofν.

Hence the right-hand side of (2.23) is bounded in magnitude for every finiteν > −1/2.
On the other hand, asν → +∞, the limiting value ofσν may be found by substituting the
uniform asymptotic representation (2.21) forMν(x) in the expression (2.23). We get

lim
ν→+∞ σν = sup

ζ∈(−∞,+∞)

[π |ζ |1/2M2(ζ )] = λ = 1.039 523 (2.25)

where the numberλ was first introduced in [10, p 397] relative to the Airy functions. The
graph ofσν (as a function ofν) is plotted as a full curve in figure 3. We see thatσν is a
continuous, strictly decreasing function ofν ∈ [−1/2,+∞) which takes on its maximum
valueσmax = 1.051 839 atν = −1/2, and that it slowly decreases with increasingν while
approaching its limiting valueλ (2.25). In particular,σ0 = 1.044 231 atν = 0.

2.2.2. Extension to the interval−cν 6 x < 0. The connection formulae (2.5) allow us to
extend the relations (2.10) to the interval [−cν, 0]. On this interval, we define the function
Eν(x) by

Eν(x) = 1 (−cν 6 x 6 0). (2.26)

The main property ofEν(x), namely that of being a positive, non-decreasing function which
is not less than unity, is thus preserved forx ∈ [−cν,+∞). Then the connection formulae
(2.5) showMν(x) to be even function in theoscillatory region[−cν, cν ],

Mν(−x) = Mν(x) (−cν 6 x 6 cν). (2.27)

For the phase functionθν(x), the connection formulae (2.5) yield the relation

θν(−|x|) = −θν(|x|)− πν (−cν 6 x 6 cν). (2.28)
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Taking advantage of the identity

2

π

∫ cν

0

dx

M2
ν (x)

= ν + 1
2 (2.29)

we derive from (2.28)

θν(x) = π

4
−

∫ cν

x

dx

M2
ν (x)

(−cν 6 x 6 cν). (2.30)

Henceθν(x) is found to be a continuous and strictly increasing function on the interval
[−cν, cν ]. Its total increase, whenx ranges from−cν throughcν , is thus equal toπ(ν+1/2).

The expressions (2.10) cannot be extended to the left of the pointx = −cν without
loss of essential properties of the functionEν(x). Instead, forx ∈ (−∞,−cν), the general
relations (2.5) are to be used in order to express the functionswν(x) anduν(x) in terms of
Mν(x) andEν(x).

2.3. Auxiliary functions related to the derivativesw′
ν(x) andu′

ν(x)

Modulus and phase functionsNν(x) andων(x) relative to the derivativesw′
ν(x) andu′

ν(x)

of the functions (2.2) and (2.3) with respect tox, are also needed for further assessments.
They are defined by (cf [19, p 156])

w′
ν(x) = Nν(x)

Eν(x)
cosων(x) u′

ν(x) = Nν(x)Eν(x) sinων(x) (2.31)

with the same definitions (2.11) and (2.26) for the weight functionEν(x). Thus

Nν(x) = [w′2
ν (x)+ u′2

ν (x)]
1/2 (−cν 6 x 6 cν)

Nν(x) =
[
u2
ν(x)w

′2
ν (x)+ w2

ν(x)u
′2
ν (x)

wν(x)uν(x)

]1/2

(cν 6 x < +∞).
(2.32)

Evidently, |w′
ν(x)| 6 Nν(x)/Eν(x) for all x ∈ [−cν,+∞). From the connection formulae

(2.5) it followsNν(−x) = Nν(x) for x ∈ [−cν, cν ]. In particular, from (2.6) and (2.32), we
obtain

Nν(0) = 2(ν+1)/2

(2π)1/401/2(ν + 1)
0

(
1 + ν

2

)
. (2.33)

The productMν(0)Nν(0) of the values (2.16) and (2.33) is equal to unity exactly,

Mν(0)Nν(0) = 1. (2.34)

As to the explicit expressions for the functionων(x), they will not be used in the present
paper, and so they are not given here.

The asymptotic form forNν(x), with ν > −1/2 being fixed whilex → +∞, is
obtainable from the definition (2.32), on using the asymptotic representations (2.7) for the
functionswν(x) anduν(x) along with the known relations [20, p 327] for their derivatives.
As a result, we obtain

Nν(x) ∼
√
x

2
(x → +∞). (2.35)

The uniform asymptotic representation forNν(x), as ν � 1 while x ∈ [0,+∞), is
readily obtained from the uniform asymptotic forms for the derivativesw′

ν(x) andu′
ν(x).
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We have, forν � 1 andx ∈ [0,+∞),

w′
ν(x) ∼ √

π

[
1
4x

2 − ν − 1
2

ζ(x)

]1/4

Ai ′(ζ ) (2.36a)

u′
ν(x) ∼ √

π

[
1
4x

2 − ν − 1
2

ζ(x)

]1/4

Bi ′(ζ ) (2.36b)

where Ai′(ζ ) and Bi′(ζ ) are the derivatives of the Airy functions with respect toζ .
Substituting (2.36a) and (2.36b) in (2.32) yields

Nν(x) ∼ √
π

[
1
4x

2 − ν − 1
2

ζ(x)

]1/4

N(ζ ) (2.37)

with N(x) being the modulus function introduced in [10, p 396] relative to the derivatives
of the Airy functions.

For everyν > −1/2, we associate with the pair of functionsMν(x) andNν(x) a positive
parameterµν defined by

µν = sup
x∈[0,+∞)

[Nν(x)Mν(x)]. (2.38)

Taking into account the asymptotic relations (2.18) forMν(x) and (2.35) forNν(x), we find
for every fixedν > −1/2

lim
x→+∞[Nν(x)Mν(x)] = 1. (2.39)

Therefore the right-hand side of (2.38) is bounded in magnitude for every finiteν > −1/2.
On the other hand, asν → +∞, the limiting value ofµν may be found by substituting
uniform asymptotic representations (2.37) forNν(x) and (2.21) forMν(x), in the expression
(2.38). We get

lim
ν→+∞µν = sup

ζ∈(−∞,+∞)

[πN(ζ )M(ζ )] = 1.060 235 (2.40)

correct to six decimal places.
The parameterµν is a continuous function ofν. As ν ranges over the interval

[−1/2,+∞), the corresponding values ofµν are confined to the segment(1.036, 1.061).
In particular,µν = 1.058 049 atν = −1/2, correct to six decimal places. The graph ofµν
is plotted in figure 3 as a broken curve. The kink in the graph is due to the fact that the
productNν(x)Mν(x) has two different local maxima on the positive real axis. The value
of the product at one of those maxima monotonically decreases with increasingν, while
another maximum value ofNν(x)Mν(x) monotonically increases withν. At the point of
the kink, the two local maximum values become equal.

2.4. Amplitude function associated withwν(x)

In order to formulate sufficient conditions for correction terms (in asymptotic forms
considered below) to be negligible, we shall have to compare those terms with the magnitude
of the Weber functionwν(x). We arrive at a suitable definition for the measure of the
magnitude ofwν(x) by introducing theamplitude functionAm[wν(x)] associated with
wν(x). Let x = xν be the greatest positive zero of the functionuν(x) (2.3)

uν(x) = 0 (x = xν)

uν(x) > 0 (x > xν).
(2.41)
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Figure 4. Graph of the amplitude function Am[wν(x)] (full curve) for ν = 4.1. The broken
curve represents the absolute value|wν(x)| for the sameν.

From (2.10) and (2.15) we infer thatxν < cν .
We define Am[wν(x)] on the intervalx ∈ [−cν,+∞) as a continuous, positive function

given by

Am[wν(x)] =
{
Mν(x) if −cν 6 x 6 xν

wν(x) if xν 6 x < +∞.
(2.42)

Obviously,|wν(x)| 6 Am[wν(x)] for x ∈ [−cν,+∞). For the rest of the real axis, i.e. for
x < −cν , an appropriate definition of the amplitude function is possible but not necessary
for the purposes of the present paper. The graph of the amplitude function Am[wν(x)] is
plotted in figure 4 forν = 4.1, as a full curve. The broken curve in this figure represents
the absolute value|wν(x)| for the sameν = 4.1.

3. Bound-state problem and its asymptotic solution

3.1. Bound-state problem

Let us consider a particle with a massm and total energyE < 0 which moves along the real
x axis in a potentialU(x) that forms a well. We assume that (i)U(x) is a real, continuous,
and three times continuously differentiable function on the whole of the real axis; and that
(ii) the functionU(x) tends to respective non-negative valuesU− andU+, asx → ±∞,
that is

lim
x→−∞ = U− > 0 lim

x→+∞ = U+ > 0. (3.43)
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Either, or both, of the valuesU± may be infinite. LetUmin < 0 be the minimum value of
the potentialU(x) on the real axis. Only the intervalUmin < E < 0 will be considered in
what follows.

The wave functionψ(x) that represents the particle’s bound state in the potential well
U(x), satisfies the Schrödinger equation

d2ψ

dx2
+ p2(x)ψ(x) = 0

(
lim

x→±∞ψ(x) = 0
)
. (3.44)

The functionp2(x) in (3.44),

p2(x) = 2m[E − U(x)] (h̄ = 1) (3.45)

coincides with the square of the classical momentum of the particle forx satisfying
U(x) 6 E. We restrict the ensuring analysis to energiesE ∈ (Umin, 0) for which the
equationp2(x) = 0, considered on the real axis−∞ < x < +∞, has two and only two
simple, distinct, real rootsx = a andx = b

p2(a) = p2(b) = 0 (a < b) (3.46)

such thatp2(x) > 0 if a < x < b, andp2(x) < 0 if x < a or x > b. We assume that
p(x) > 0 for a < x < b. To simplify the reasoning, we may suppose that these conditions
are fulfilled for all E ∈ (Umin, 0), though the final result (see theorem 2 in section 4) is not
bound to the latter assumption.

3.2. Introduction of an asymptotic approach

In order to apply asymptotic methods in solving the Schrödinger equation, we have to
specify a large parameter in the differential equation (3.44). An explicit specification of a
large parameter in equation (3.44) is, however, not necessary atthis stage of analysis. It
will suffice if we assume the functionp2(x) to be ‘sufficiently smooth’ on the real axis. The
exact mathematical meaning of the latter property is defined below by (4.101). Specification
of a large parameter for finite-range potentials is considered below in section 5.

Thus, we have to consider the problem of finding an asymptotic representation which
should be valid uniformly with respect to all realx including the two turning pointsx = a

and x = b, for the wave functionψ(x) that describes the particle’s bound state in the
potentialU(x). The appropriate functions to representψ(x) in problems with two turning
points, are the Weber parabolic cylinder functions [21–23].

3.2.1. Definition of thex–ξ mapping. Further analysis follows closely the reasoning of
section 3 in [25]. We define a real, continuous, and strictly increasing functionξ = ξ(x)

that satisfies the equation(
dξ

dx

)2

= p2(x)

ξ2
0 − ξ2

(3.47)

on the real axis, with a real positive constantξ0. The constantξ0 is completely determined
by equation (3.47) if we consider the latter along with the requirement that the derivative
dξ/dx be finite, continuous, and positive on the real axis including at the two turning points
x = a andx = b, i.e.

dξ

dx
> 0 (−∞ < x < +∞). (3.48)
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Thus we find

ξ2
0 = 2

π

∫ b

a

p(x) dx. (3.49)

The solutionξ = ξ(x) of equation (3.47) is then found to be unique and determined by the
following relations

(a) if x 6 a, thenξ 6 −ξ0 and∫ −ξ0

ξ

(ξ2 − ξ2
0 )

1/2 dξ =
∫ a

x

|p(x)| dx (3.50a)

(b) if a 6 x 6 b, then−ξ0 6 ξ 6 ξ0 and∫ ξ

−ξ0

(ξ2
0 − ξ2)1/2 dξ =

∫ x

a

p(x) dx (3.50b)

(c) if x > b, thenξ > ξ0 and∫ ξ

ξ0

(ξ2 − ξ2
0 )

1/2 dξ =
∫ x

b

|p(x)| dx. (3.50c)

As was proven by Langer [23], the functionξ(x) defined by (3.50a–c) is continuous, strictly
increasing, and thrice continuously differentiable on the whole of the real axis, if the above
conditions upon the potentialU(x) are fulfilled. Thus the functionξ(x) defines a one-to-one
mapping of thex axis,−∞ < x < +∞, onto theξ axis,−∞ < ξ < +∞.

While being strictly increasing, the functionξ(x) has a unique zerox = x0 on the real
axis, such thata < x0 < b. Let us take the pointx = x0 as the origin on thex axis,x0 = 0.
This choice is supposed to hold throughout the remaining part of the paper.

3.2.2. Specification of the parameterν. For eachE such thatUmin < E < 0, we define a
real, continuous parameterν = ν(E)

ν + 1
2 = 1

π

∫ b

a

p(x) dx. (3.51)

As E ranges over the interval(Umin, 0), the parameterν(E) varies in the interval
(−1/2, νmax), where the (finite or infinite) limiting valueνmax is given by

νmax = −1

2
+ 1

π
lim
E→0−

∫ b

a

p(x) dx. (3.52)

The parameterν (3.51) is related toξ0 (3.49) byξ2
0 = 2ν + 1.

3.2.3. Basic representation for recessive solutions.Next, let us consider the function

φν(x) =
[
ξ2

0 − ξ2

p2(x)

]1/4

wν

(
ξ
√

2
)

(3.53)

wherewν(x) is the Weber function defined by (2.2),ξ = ξ(x) is given by the relations
(3.50a–c), andν is specified by (3.51). By direct differentiation we find that the function
(3.53) satisfies the following differential equation

d2φν

dx2
+ [p2(x)+ R(x)]φν = 0 (3.54)
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where

R(x) = 1

2

|p(x)|′′
|p(x)| − 3

4

|p(x)|′2
|p(x)|2 + 3ξ2 + 2ξ2

0

4(ξ2 − ξ2
0 )

2

p2(x)

ξ2
0 − ξ2

(3.55)

= −(ξ ′)1/2
d2

dx2
(ξ ′)−1/2 ξ ′ ≡ dξ

dx
(3.56)

and the prime denotes differentiating with respect tox.
Consider anexact solutionψ(+)

ν (x) to the Schr̈odinger equation (3.44) that vanishes at
positive infinity,

lim
x→+∞ψ

(+)
ν (x) = 0. (3.57)

If U(x), E and ν = ν(E) are specified as indicated above, this solution exists for every
ν > −1/2 [24]. Let us tryψ(+)ν (x) as the sum

ψ(+)
ν (x) = φν(x)+ δ(+)ν (x) (3.58)

whereφν(x) is given by (3.53), with an additional termδ(+)ν (x) satisfying

lim
x→+∞ δ

(+)
ν (x) = 0 lim

x→+∞
dδ(+)ν (x)

dx
= 0. (3.59)

We substitute the sumψ(+)
ν (x) (3.58) in the Schr̈odinger equation (3.44), this yields

a differential equation forδ(+)ν (x). Then we transform the latter to an equivalent integral
equation forδ(+)ν (x) while taking into account the boundary conditions (3.59). Finally, on
putting δ(+)ν (x) into the same form asφν(x) (3.53),

δ(+)ν (x) =
[
ξ2

0 − ξ2

p2(x)

]1/4

h(+)ν (x) (3.60)

we obtain an integral equation for the correction termh(+)ν (x)

h(+)ν (z) =
∫ +∞

z

Kν(z, z1)

(
R(z1)

|p(z1)|
dt

dz1

)
[wν(z1)+ h(+)ν (z1)] dz1 (3.61)

where we have denoted

z = z(x) ≡
√

2ξ(x) z1 = z1(t) ≡
√

2ξ(t). (3.62)

In view of (3.51), the kernelKν(z, z1) in (3.61) may be written as

Kν(z, z1) = | 1
4z

2
1 − ν − 1

2|1/2[wν(z)uν(z1)− uν(z)wν(z1)] (3.63)

wherewν(z) anduν(z) are the Weber functions defined by (2.2) and (2.3). Let us investigate
the integral equation (3.61).

3.2.4. Integral equation for the correction termh(+)ν (z). The proof for the existence and
uniqueness of the solutionh(+)ν (z) to equation (3.61), as well as the assessment of its
magnitude, are based on thetheorem on singular integral equationsby Olver (see [10,
theorem 10.1 in ch 6, p 217]). The purpose of the ensuing analysis is to show that the
application of theorem 10.1 to the integral equation (3.61) results in the following.

Theorem 1.With the foregoing specifications in equation (3.61),
(i) for eachν > −1/2, the integral equation (3.61) has a unique, continuous solution

h(+)ν (z) on the intervalz ∈ [−cν,+∞) provided the integral

V+(z) =
∫ +∞

z

dz1

∣∣∣∣R(z1)

p(z1)

∣∣∣∣ dt

dz1
(3.64)
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converges for allz in this interval;
(ii) the functionh(+)ν (z), which satisfies (3.61), and its first derivative dh(+)ν /dz, have

the assessments

|h(+)ν (z)| 6 gν(z)[e
σνV+(z) − 1] Am[wν(z)] (3.65)∣∣∣∣dh(+)ν (z)

dz

∣∣∣∣ 6 Nν(z)

Eν(z)
[eσνV+(z) − 1] (3.66)

for z ∈ [−cν,+∞).
In equations (3.65) and (3.66),
(iii) the functions Am[wν(z)], Eν(z) have been defined in section 2;
(iv) σν is a finite, positive parameter defined by (2.23) ; its magnitude is of the order

of unity for all ν > −1/2 including in the limitν → +∞;
(v) gν(z) is a continuous positive function that is bounded in magnitude by a number

of the order of unity for eachν > −1/2, uniformly with respect to allz ∈ [−cν,+∞).
Moreover,

gν(z) = 1 (−cν 6 z 6 zν) gν(z) =
√

2 (cν 6 z < +∞) (3.67)

wherezν is the greatest positive root of the equationuν(z) = 0 with uν(z) defined by (2.3).

Proof. Let us apply theorem 10.1 [10, ch 6, p 217] to equation (3.61) considered on the
interval −cν 6 z < +∞ of the realz axis. In the notation of theorem 10.1, we have
α = +∞, β = −cν , and

φ(z1) = ψ0(z1) = R(z1)

|p(z1)|
dt

dz1
ψ1(z1) = 0 J (z1) = wν(z1)

8(z) = 90(z) = V+(z) 91(z) = 0.
(3.68)

If the functionswν(z), φ(z), andKν(z, z1) in equation (3.61) are specified as indicated
above in this section, then the conditions (i)–(iv) of theorem 10.1 are fulfilled. Next, for
z ∈ [−cν,+∞), we can use the expressions (2.10) for the functionswν(x) anduν(x). On
substituting them in (3.63), we obtain

|Kν(z, z1)| = Mν(z)Mν(z1)

∣∣∣∣z2
1

4
− ν − 1

2

∣∣∣∣1/2
Eν(z1)

Eν(z)

×
∣∣∣∣cosθν(z) sinθν(z1)− E2

ν (z)

E2
ν (z1)

sinθν(z) cosθν(z1)

∣∣∣∣. (3.69)

Taking into account thatz 6 z1 and henceEν(z) 6 Eν(z1), we see that the factor on the
second line of (3.69) is less than or equal to unity for allz ∈ [−cν,+∞). Therefore, from
equation (3.69) it follows

|Kν(z, z1)| 6 Pν(z)Qν(z1) (−cν 6 z 6 z1 < +∞) (3.70)

where the functionsPν(z) andQν(z1)

Pν(z) = Mν(z)

Eν(z)
Qν(z1) = Mν(z1)Eν(z1)

∣∣∣∣z2
1

4
− ν − 1

2

∣∣∣∣1/2

(3.71)

satisfy the requirements of theorem 10.1. Using the expressions (3.71) forPν(z) andQν(z1),
we see that the parameterκ0 of theorem 10.1 coincides withσν (2.23). Also, as long as

|wν(z)| 6 Mν(z)

Eν(z)
for − cν 6 z < +∞ (3.72)
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using the expression (3.71) forQν(z) yields an assessment for the second parameterκ of
theorem 10.1, i.e.κ 6 σν . Hence, for everyν > −1/2 including in the limit ν → +∞, the
condition (vi) of theorem 10.1 is fulfilled. The statement (i) of theorem 1 is thus proved.
Furthermore, from theorem 10.2 [10, ch 6, p 218] we obtain the assessment forh(+)ν (z)

|h(+)ν (z)| 6 Mν(z)

Eν(z)
[eσνV+(z) − 1] (−cν 6 z < +∞). (3.73)

The latter relation is brought into its final form (3.65) by introducing the functiongν(z)

defined by

gν(z) = Mν(z)

Eν(z)Am[wν(z)]
=


1 if −cν 6 z 6 zν

Mµ(z)

wν(z)
if zν 6 z 6 cν

√
2 if cν 6 z < +∞.

(3.74)

In a similar way, using the representations (2.31) forw′
ν(x) and u′

ν(x), we obtain the
assessment (3.66) for the derivative dh(+)ν (z)/dz. �

Taking into account (3.47) and (3.55), we bring the expression (3.64) into its final form

V+(x) =
∫ +∞

x

dx

|ξ2(x)− ξ2
0 |1/2

∣∣∣∣(ξ ′)−1/2 d2

dx2
(ξ ′)−1/2

∣∣∣∣ (ξ ′ = dξ/dx) (3.75)

whereξ2
0 = 2ν + 1.

3.3. Recessive solutions and their matching

If U(x), E, andν = ν(E) are specified as indicated in sections 3.1 and 3.2.2, then forevery
fixed ν > −1/2, there exists anexact solutionψ(+)

ν (x) of equation (3.44) which vanishes
at positive infinity [24], and this solution is unique (apart from a constant factor). In view
of (3.58), (3.53), and (3.60), it may be written as

ψ(+)
ν (x) =

[
ξ2

0 − ξ2

p2(x)

]1/4

[wν(z)+ h(+)ν (z)]
(
z = z(x) ≡

√
2ξ(x)

)
. (3.76)

From the assessments (3.65) and (3.66), we see that, for everyν > −1/2, the magnitude
of the correction termh(+)ν (z) in (3.76) is negligibly small on the interval [−cν,+∞), as
compared with the first termwν(z) in the square brackets of (3.76),|h(+)ν (z)| � Am[wν(z)],
if the condition V+(x) � 1 is fulfilled for all x such thatz(x) ∈ [−cν,+∞) (i.e. for all
x ∈ [−ςν,+∞), wherex = −ςν < 0 is the (unique) root of the equationz(x) = −cν).
However, we cannot neglecth(+)ν (z) on the interval(−∞,−cν) if ν assumes a non-negative
integer valueν = n = 0, 1, . . . . Besides, for arbitraryν, except for certain special values
of the latter, the magnitude ofψ(+)

ν (x) increases and is unbounded atnegativeinfinity, as
x → −∞.

On the other hand, with the same specifications inU(x), E, and ν = ν(E), for
every fixed ν > −1/2 there exists anotherexact solution ψ(−)

ν (x) of the Schr̈odinger
equation (3.44), the one which vanishes atnegativeinfinity

ψ(−)
ν (x) =

[
ξ2

0 − ξ2

p2(x)

]1/4

[wν(−z)+ h(−)ν (z)] (z = z(x) ≡
√

2ξ(x)) (3.77)

and this solution is also unique (within a constant factor). The correction termh(−)ν (z)

in (3.77) vanishes at negative infinity along with its derivative, for everyν > −1/2. In
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just the same manner as considered above with regard toh(+)ν (z), we may prove that the
correction termh(−)ν (z) in (3.77) is a continuous function on the interval(−∞, cν ] which
is continuously differentiable on this interval and has the following assessments

|h(−)ν (z)| 6 gν(−z)[eσνV−(x) − 1] Am[wν(−z)] (−∞ < z 6 cν) (3.78a)∣∣∣∣dh(−)ν (z)

dz

∣∣∣∣ 6 Nν(−z)
Eν(−z) [e

σνV−(x) − 1] (−∞ < z 6 cν). (3.78b)

In (3.78a, b), x is related toz by z = z(x) whereas the function V−(x) is given by

V−(x) =
∫ x

−∞

dx

|ξ2(x)− ξ2
0 |1/2

∣∣∣∣(ξ ′)−1/2 d2

dx2
(ξ ′)−1/2

∣∣∣∣ (ξ ′ = dξ/dx). (3.79)

From the latter assessments it follows that, for every fixedν > −1/2, the magnitude of the
correction termh(−)ν (z) in (3.77) is negligibly small on the interval(−∞, cν ], as compared
with the first termwν(−z) in the square brackets of (3.77)|h(−)ν (z)| � Am[wν(−z)], if
V−(x) � 1 for all x such thatz(x) ∈ (−∞, cν ]. However, we cannot neglecth(−)ν (z) on
the interval(cν,+∞) if ν takes on a non-negative integer valueν = n = 0, 1, . . . . Besides
for arbitrary ν, except for certain special values of the latter, the magnitude ofψ(−)ν (x)

increases and is unbounded atpositive infinity, asx → +∞.
Let us now consider the pair of exact solutions (3.76) and (3.77). Forany fixed

ν > −1/2, the first of them,ψ(+)
ν (x), vanishes at positive infinity whereas the second

one, ψ(−)
ν (x), vanishes at negative infinity. If we find a specific value forν such that

the functionsψ(+)
ν (x) andψ(−)

ν (x) become linearly dependent, then the two functions will
representone and the samesolution to equation (3.44) (apart from constant factors), which
vanishes both at positive and at negative infinities simultaneously. This specific solution is
just the wavefunctionψ(x) that represents the particle’s bound state in the potentialU(x).

The necessary and sufficient condition for the functionsψ(+)
ν (x) and ψ(−)

ν (x) to be
linearly dependent is that their Wronskian vanishes

W {ψ(+)
ν (x), ψ(−)

ν (x)} = ψ(+)
ν (x)

dψ(−)
ν (x)

dx
− ψ(−)

ν (x)
dψ(+)

ν (x)

dx
= 0. (3.80)

Note that the WronskianW {ψ(+)
ν (x), ψ(−)

ν (x)} does not depend onx whateverν > −1/2
may be. Substituting the expressions (3.76) and (3.77) in (3.80), we obtain the equation for
the energies of the bound states

W {wν(z), wν(−z)} +W {wν(z), h(−)ν (z)} +W {h(+)ν (z), wν(−z)} +W {h(+)ν (z), h(−)ν (z)} = 0.

(3.81)

In all terms of (3.81) the differentiation is performed with respect toz. According to the
known expressions [20, p 327] for the Wronskians of the parabolic cylinder functions, and
in view of the definition (2.2) of the functionwν(x), we find that the first term on the
left-hand side of (3.81) is equal to

W {wν(z), wν(−z)} = − sinπν. (3.82)

Taking into account that the expression on the left-hand side of (3.81), taken as a whole,
does not depend onz, we see that the sum of the remaining terms on the left-hand side
of (3.81) is a function only ofν, not of z. On designating the latter sum by1(ν),

1(ν) = W {wν(z), h(−)ν (z)} +W {h(+)ν (z), wν(−z)} +W {h(+)ν (z), h(−)ν (z)} (3.83)

we rewrite equation (3.81) in the form

sinπν = 1(ν) (3.84)
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where 1(ν) is a real, continuous function ofν > −1/2. The system of twoexact
equations (3.51) and (3.84) determines the energies of the particle’s bound states in the
potentialU(x).

Obviously, an exact evaluation of the quantity1(ν) amounts to solving the Schrödinger
equation (3.44) exactly, which is not possible except for a few simplest potentials. However,
it is possible to establish an upper bound to the magnitude of1(ν), and thus to indicate
sufficient conditions for1(ν) to be negligible, with respect to a large variety of sufficiently
smooth potentialsU(x).

3.4. Assessments for1(ν)

Consider the interval [−cν, cν ], with cν defined by equation (2.12), and letza ∈ [−cν, cν ]
be an arbitrary point in this interval. We write the Wronskians on the right-hand side of
(3.83) explicitly. Then we use the estimates (3.65), (3.66), (3.78a, b) for the correction
termsh(±)ν (z) and their derivatives along with the assessments for|wν(z)| and |w′

ν(z)| that
follow from (2.10) and (2.31), all of the estimates taken at the pointza. As a result, from
(3.83) we get the final assessment for1(ν)

|1(ν)| 6 2µν [e
2σνVmin(ν) − 1]. (3.85)

In (3.85), the parametersσν andµν have been defined by (2.23) and (2.38), respectively,
whereasVmin(ν) denotes the infinum

Vmin(ν) = inf
za∈(−cν ,cν )

Vmax(za). (3.86)

In the latter relation, Vmax(za) is the greater one of the two positive values V+(xa) (3.75)
and V−(xa) (3.79), both taken at the pointxa such thatza = z(xa),

Vmax(za) = max{V−(xa),V+(xa)}. (3.87)

In view of the definitions (3.75) and (3.79), we have an obvious relation

Vmin(ν) 6 V−(xa)+ V+(xa) = E(ν) (3.88)

where the function E(ν)

E(ν) =
∫ +∞

−∞

dx

|ξ2(x)− ξ2
0 |1/2

∣∣∣∣(ξ ′)−1/2 d2

dx2
(ξ ′)−1/2

∣∣∣∣ (ξ2
0 = 2ν + 1, ξ ′ = dξ/dx)

(3.89)

is the error-control integral introduced in [25]; it is supposed to be convergent.
For the purpose of analytical investigation, the quantityVmin(ν) in (3.85) may be

replaced by its upper bound E(ν) (3.89),

|1(ν)| 6 2µν [e
2σνE(ν) − 1]. (3.90)

However, if one is interested innumerical assessments, the use of equation (3.86) leads
to somewhat better results. For instance, if the potentialU(x) is represented by aneven
function,U(−x) = U(x), then takingxa = x0 = 0 yields za = z(0) = 0, whereupon the
inequality (3.85) reduces to a simpler relation

|1(ν)| 6 2[eσνE(ν) − 1] (3.91)

without the factor 2 in the exponent, and withµν replaced by unity in view of (2.34).
Let us introduce a positive parameterρν defined by

ρν =
{

2[eσνE(ν) − 1] for even potentialsU(−x) = U(x)

2µν [e
2σνE(ν) − 1] otherwise.

(3.92)
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Using the definition (3.92), we may write the assessments (3.90) and (3.91) as a single
relation

|1(ν)| 6 ρν (ν > −1/2). (3.93)

Sinceσν andµν are continuous functions ofν ∈ [−1/2,+∞) (see section 2), the parameter
ρν (3.92) is also continuous, except at singular points of the error-control integral E(ν) (see
[25, section 3]).

4. Equation for the energies of bound states

4.1. Solutions of the basic equationsinπν = 1(ν)

The equation (3.84) is to be solved for realν > −1/2. In turn, each real valueν > −1/2
may be represented, in a unique fashion, as the sum

ν = n+ δ (n = 0, 1, . . . ,−1/2< δ 6 1/2) (4.94)

of a non-negative integern > 0 and a real numberδ whose absolute value does not exceed
one-half. On substituting (4.94) in (3.84), we bring equation (3.84) into an equivalent form

δ = (−1)n

π
arcsin1(n+ δ) (n = 0, 1, . . . ,−1/2< δ 6 1/2). (4.95)

This formula defines a sequence of mutually independent equations numbered byn; each
one of them is to be solved for realδ ∈ (−1/2, 1/2]. Let δ = δn be a solution (if it exists)
of equation (4.95) for givenn. Our purpose is now to extract all possible information on the
solutions of equation (4.95) which is available in view of the established properties of the
function1(n+ δ). First, theexistenceof solutions to equation (4.95) is to be investigated.

4.1.1. Existence and uniqueness of solutions.Let us fix a non-negative integern > 0, and
let ε > 0 be a positive number such thatε < 1/2. With the given integern we associate a
non-negative parameter%n(ε) by

%n(ε) = sup
δ∈(−ε,ε)

ρn+δ (n > 0) (4.96)

whereρν was defined by (3.92) (we distinguish between the lettersρ and%).
The sufficient condition for equation (4.95) to have a real rootδ = δn in the interval

(−ε, ε), is

%n(ε) < sinπε. (4.97)

Indeed, from (4.95), (3.93), (4.97), and (4.96) we find

1

π
arcsin|1(n+ δ)| 6 1

π
arcsinρn+δ 6 1

π
arcsin%n(ε) < ε (−ε 6 δ 6 ε). (4.98)

Hence, as the first memberδ of equation(4.95) ranges over the closed interval [−ε, ε], the
second member of this equation varies continuously in such a manner that all its values
remain within the same interval(−ε, ε). Consequently, if the condition (4.97) is satisfied
for the given integern > 0, then, for thisn, equation (4.95) has at least one real solution
δ = δn such the|δn| < ε. In particular, taking in (4.97) and (4.96)ε � 1, we see that
the sufficient condition for equation (4.95) to have a solutionδ = δn such that|δn| � 1, is
ρn � 1 or, in view of the definition (3.92), E(n) � 1, provided the error-control integral
E(ν) (3.89) is a continuous function atν = n.
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Theuniquenessof the solutionδn cannot be established on the basis of the single relation
(3.93). In addition to the latter, a proper assessment for the derivative d1(ν)/dν would also
be needed. The derivation of such assessment should be a subject of special discussion.
From a mathematical standpoint, there is no general reason to rule out the possibility of
more than one solution to equation (4.95) with one and the same integern > 0, for some
sophisticated potentials. However, even if, for somen > 0, equation (4.95) has several
different rootsδ = δ

(j)
n , j = 1, 2, . . . , jn, all of them have none the less the same assessment

(4.100) (see below) and hence are small under the same condition (4.101). In what follows,
we restrict ourselves to the case of a single solutionδ = δn for each non-negative integer
n > 0. This is the most probable situation that is found in known applications of the
Bohr–Sommerfeld formula to reasonable physical problems.

4.1.2. Remarks on numerical assessment of solutions.In the previous section, we have
addressed the problem of establishing sufficient conditions (uponU(x)) for the rootδ = δn
of equation (4.95) to fall into the prescribed interval. There is an inverse problem, namely,
that of determining the bounds for the values of the rootδn, if it exists, for aspecificpotential
U(x) and for given integern > 0.

To get numerical assessments, we have to specify the choice ofε in (4.96) for each
possible integern > 0 while taking into account singularities of the error-control integral.
In the absence of any further restrictions on the potentialU(x), the parameterε may be
specified as follows. Letnmax be the (finite or infinite) integer part of the numberνmax

defined by (3.52). Ifνmax is finite, thenδmax denotes its (non-negative) fractional part. If
nmax > 1, then forn = nmax we setεn = δmax/2. If nmax > 1, then with each positive
integern = 1, 2, . . . , nmax − 1, we associateεn = 1/2. Finally, to define the parameter
ε0 for n = 0, we take into account the fact that the uncertainty principle imposes a finite
lower bound to possible values of the ground-state energyE0, namely,E0 −Umin > η > 0.
The lower boundη may be estimated by standard methods of quantum mechanics (see,
for example, problem 2 for the harmonic oscillator in [27, section 23]). Substituting the
estimated lowest possible value ofE0 = E0(η) in (3.51) with ν = δ, we obtain the lower
bound δ = δη > −1/2 for possible values ofδ. Then we setε0 = δη, for n = 0. As
a result, the parameterε in (4.96) is defined for eachn = 0, 1, . . . , nmax. Let us denote
%n = %n(εn). Using inequality (3.93) along with (3.92), from equation (4.95) we obtain
the assessment (4.100) (see below) for the rootδ = δn of equation (4.95) (if it exists in
the related interval(−εn, εn)), the assessment being valid for eachn = 0, 1, . . . , nmax, such
that %n < 1. Note that, forn = 1, 2, . . . , nmax − 1 (if nmax > 1), the condition%n < 1 is
sufficient for equation (4.95) to have at least one real rootδ = δn such that|δn| < 1

2.
In general, if a particle’s energyE is not too close to the singular points of the error-

control integral E(ν) (most often the endpoints of the interval (Umin, 0)), then the parameter
ρν (3.92) is a smooth function ofν. Therefore, finding the maximum value ofρn+δ in (4.96)
over the corresponding interval (|δ| 6 εn), for a given integern > 0, generally presents
no great problem. Even neglectingδ in ρn+δ completely (which amounts to replacing%n
in (4.100) byρn from (3.92) with ν = n), would often result in no appreciable change
in the numerical value of%n. For this reason, the formulae (4.100) and (3.92) provide a
convenient way of assessing the correction termδn in the exact equation (4.99) even if the
error-control integral (3.89) is (less than or) of the order of unity.
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4.2. Exact equation for the energies of bound states

Substituting the real rootδ = δn of equation (4.95), for eachn > 0, in the relation (4.94)
for ν, and taking into account the definition ofν (3.51), we obtain anexact equation for
the energies of the bound states

1

π

∫ b

a

p(x) dx = n+ 1
2 + δn (n = 0, 1, . . . , nmax). (4.99)

As was shown in section 4.1.2, the termδn in equation (4.99) has the assessment

|δn| 6 1

π
arcsin%n (n = 0, 1, 2, . . . , nmax) (4.100)

provided%n < 1, where%n = %n(εn) was defined by (4.96) withε = εn as specified in
section 4.1.2 (if%n > 1, then we cannot expect the Bohr–Sommerfeld formula to be a good
approximation). In view of the results obtained above and, in particular, in section 4.1.1,
we have the following.

Theorem 2.Under the above hypotheses upon the potentialU(x), for a given integer
n, n = 0, 1, 2, . . . , nmax, the solution of the bound-state problem (3.44) exists, while the
energyE = En of the nth bound state satisfies equation (4.99) with|δn| � 1, if the
error-control integral E(ν) (3.89), taken atν = n, is small compared with unity

E(n) � 1 (4.101)

provided the function E(ν) is continuous atν = n. Moreover, the termδn in (4.99) has the
assessment

|δn| 6 AnE(n)+O(E2(n)). (4.102)

The coefficientAn = 4σnµn/π , with σn andµn defined by (2.23) and (2.38), respectively,
does not depend onU(x) and is of the order of unity forall n > 0. In particular,
A0 = 1.382 405 forn = 0, whereasAn attains its maximumA∞ = 1.403 287 in the
limit n → ∞, correct to six decimal places. For even functionsU(−x) = U(x), the
assessment (4.102) may be sharpened on replacingAn by Bn = 2σn/π .

The expression forAn in (4.102) was obtained from the first-order term in the expansion
of ρν (3.92) in powers of E(ν).

Hence, under the condition (4.101) the equation (4.99) reduces to the conventional
Bohr–Sommerfeld quantization formula. Furthermore, the relation (4.101) establishes the
sufficient condition for the Bohr–Sommerfeld formula to be extended to lower integers
n ∼ 1, including the smallest onen = 0 if E(0) � 1.

In view of theorem 1 (see section 3.2.4), the condition (4.101) is also sufficient for
the correction termsh(±)ν (z) in the exact wavefunctions (3.76) and (3.77) to be neglected
in comparison with the corresponding termswν(±z), |h(±)ν (z)| � Am[wν(±z)], uniformly
for z in the respective overlapping intervals [−cν,+∞) and (−∞, cν ]. At the same time,
rejecting the termδn in equation (4.99) (if (4.101) is fulfilled) turns the resulting Bohr–
Sommerfeld formula into the condition for the functionswν(±z) to be linearly dependent.
As a result, the uniform asymptotic representation for the particle’s bound stateψn(x)

related to thenth energy levelEn, is given on the whole of the real axis by

ψn(x) ∼
[

2n+ 1 − ξ2

p2(x)

]1/4

wn

(
ξ
√

2
)

(E(n) � 1,−∞ < x < ∞) (4.103)

wherewν(x) is the Weber function defined by (2.2) whereas the functionξ = ξ(x) is
determined by (3.50a–c) with ξ2

0 = 2n+ 1.



7250 L V Chebotarev

As an example, for harmonic oscillatorU(x) = mω2x2/2, and from (3.50a–c) we find
ξ(x) = x

√
mω/h̄ (cf [27] equation (23.7)), so the error-control integral (3.89)vanishes

identically and in (4.99)δn = 0 for all n > 0. Hence, for the harmonic oscillator the
Bohr–Sommerfeld formula turns out to be exact for alln > 0, in accordance with the
well known fact. Moreover, on writing ¯h explicitly, for E = En = h̄ω(n + 1/2) we have
p2(x) = [2n + 1 − x2mω/h̄](mω/h̄) so (4.103) yields the exact wavefunction for thenth
bound state on the whole of the real axis

ψn(x) =
(
πh̄

4mω

)1/4 1√
2nn!

exp

(
−x2mω

2h̄

)
Hn

(
x

√
mω

h̄

)
(4.104)

which coincides with the known expression (23.12) in [27] multiplied with(πh̄/2mω)1/2.

5. Finite-range potentials

5.1. Scaling property of the error-control integral

Let us consider an important particular case when there is just a single, finite length scale
l associated with the potentialU(x). This means that, in addition to its properties assumed
above in section 3.1, the functionU(x) vanishes asx → ±∞, and it is integrable over the
real axis. The latter property allows us to define the length scalel by

l = 1

|U0|
∣∣∣∣ ∫ +∞

−∞
U(x) dx

∣∣∣∣ (5.105)

whereU0 is the typical value of the functionU(x) on the real axis. We assume that there
are no other length scales associated withU(x). Hence the functionU(x) may be written
as

U(x) = U0f
(x
l

)
(U0 < 0) (5.106)

wheref (x) is a generic designation for a function of just one variable. We denote byk0

the typical wave number associated with the potentialU(x), that is,

k0 =
√

2m|U0| (h̄ = 1). (5.107)

Let k = √
2m|E| be the wave number of the particle with the total energyE.

There is an important property the error-control integral has with respect to finite-range
potentials. Indeed, equations (3.49), (3.50a–c) show thatξ = ξ(x) is a homogeneous
function of the order 1/2 with respect to scaling transformations of a particle’s momentum
p(x)†. This means that multiplyingp(x) with a constant factorα > 0 entails multiplying
ξ(x) by α1/2. Sincep(x) contains the parameterk0l only as a factor, the functionξ(x)
is proportional to

√
k0l. The formula (3.89) then shows the error-control integral to be a

function of the form

E(ν) = 1

k0l
f

(
k

k0

)
≡ h̄

l
√

2m|U0|
f

(
k

k0

)
. (5.108)

Note that the large parameter designated byu in reference [19] may be identified withk0l

in problems with finite-range potentials in quantum mechanics (cf [26]). For finite-range
potentials, from theorem 2 in section 4.2 we obtain the following.

† In fact, this is true with respect to more general scaling transformations of a particle’sclassical action. Indeed,
equations (3.50a–c) defineξ(x), for all x, as a function of just two variables

∫ b
a
p(x)dx and

∫ x
a

|p(x)| dx so there
is no direct dependence ofξ(x) on x.
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Theorem 3.For finite-range potentialsU(x) as defined above, the sufficient condition for the
error termδn in equation (4.99) to be negligible(|δn| � 1) uniformly for n ∈ [0, nm] with
a positive integernm < nmax is k0l � 1 or, written explicitly,h̄ � l

√
2m|U0|, provided the

error-control integral E(ν) (3.89) is a continuous function in the closed interval 06 ν 6 nm.

5.2. Comparison with a known exact solution

Consider, as an example, the problem of determining the energiesEn of a particle’s bound
states in a (finite-range) potential well

U(x) = U0

cosh2(x/ l)
(U0 < 0). (5.109)

For the potential (5.109), the error-control integral (3.89) has been calculated numerically
as a function of the parameterkl, for k0l = 10, by performing direct numerical integration
in (3.89). The graph of the function E(kl) was plotted as a broken curve in figure 2 of [25].
The graph shows a strong singularity of the function E(kl) in the range of low energies,

E(kl) ∼ 1

3kl
(kl → 0+) (5.110)

as well as a much weaker logarithmic singularity of this function near the bottom of the
potential well,

E(kl) ∼ 1

4k0l
| ln(k0l − kl)| (kl → k0l − 0). (5.111)

At the same time, in a wide range inside the interval (0, k0l), the values of E(kl) are of the
order of 1/(k0l). For instance, in figure 2 of [25], the function E(kl) attains its minimum
value Emin = 0.1376 atkl = 6.0898, correct to four decimal places. All those features
of the function E(kl) are found to be in complete agreement with the general properties
of the error-control integral, which have been established in [25, section 3]. In view of
equations (5.110) and (5.111), the condition E(ν) � 1 for the Bohr–Sommerfeld formula to
be valid, will be fulfilled for allE ∈ (−|U0|, 0) if, first, the parameterk0l is large compared
with unity k0l � 1, and secondly, the particle’s energyE is not too close to the endpoints
of the interval(−|U0|, 0) i.e. | ln(k0l − kl)| � k0l andkl � 1.

On calculating the phase integral in equation (4.99) explicitly, we obtain the exact
equation for the energies of the bound states in the potential (5.109)

1

π

∫ b

a

p(x) dx = k0l − kl = n+ 1
2 + δn (n = 0, 1, . . .). (5.112)

It is easily seen that the conditionk0l � 1 is sufficient for the correction termδn on the
right-hand side of (5.112) to be negligible forall lower integersn = 0, 1, . . . . Indeed,
assumek0l � 1 and suppose that|δn| � 1 in (5.112). Then, for all those integers, the
differencek0l − kl in (5.112) is bounded from zero by a number that is nearly equal to
1/2. In view of equation (5.111), the condition (4.101), which makes neglecting the termδn
legitimate, will be satisfied for all lower integersn > 0 as long ask0l � 1. The hypothesis
|δn| � 1 is thus verified. In particular, forn = 0, substituting the calculated numerical
values of E(0) in the relation (4.102) yields the assessments forδ0

|δ0| 6 1.1783

k0l
(k0l = 10,E(0) = 0.1772,

1

π
arcsinρ0 = 0.1333) (5.113a)

|δ0| 6 1.5655

k0l
(k0l = 100,E(0) = 0.0235,

1

π
arcsinρ0 = 0.0159) (5.113b)
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correct to four decimal places. In fact, the actual numbers in the numerators of the latter
relations, as obtained from the exact solution of the problem [27], are found to be even less,
i.e. 0.1249 and 0.1250, respectively.

Hence, if the potential (5.109) satisfiesk0l � 1, then the Bohr–Sommerfeld quantization
formula for this potential is applicable to the range of lower quantum numbers, to begin at
the smallest onen = 0. On neglecting the termδn on the right-hand side of (5.112), we
obtain approximate valuesE∼

n for the energies of the bound states

E∼
n = − h̄2

2ml2
[k0l − (n+ 1

2)]
2 (n = 0, 1, . . .). (5.114)

The meaning of the conditionk0l � 1 becomes quite clear if we compare the
approximate valuesE∼

n given by equation (5.114) with the exact ones [27]

En = − h̄2

2ml2

[√
(k0l)2 + 1

4 − (n+ 1
2)

]2

(n = 0, 1, . . .). (5.115)

It is readily seen that, for eachn > 0, the approximate valueE∼
n (5.114) is formally obtained

from the corresponding exact valueEn (5.115) by neglecting the number 1/4 under the sign
of the square root in the brackets on the right-hand side of (5.115). Neglecting the term 1/4
in comparison withk0l is, indeed, legitimate as long as the conditionk0l � 1 is fulfilled,
except, possibly, for very large numbersn, when the difference between the two large terms
in the square brackets of (5.115) may become small compared with each one of the terms.

The exact expression for correction termδn in (5.112)

δn = k0l +
√
(k0l)2 + 1

4 (n = 0, 1, . . .) (5.116)

is found to be independent of the quantum numbern, andδn ∈ (−1/2, 0) for all k0l > 0.
In particular, for largek0l � 1, δn is inversely proportional tok0l

δn ∼ −1

8

1

k0l
(k0l � 1) (5.117)

which is in accordance with the relation (4.102) and the scaling property (5.108) of the
error-control integral.

In the range of large quantum numbersn � 1, wherekl � 1, the estimated upper
bound to the magnitude of the correction termδn in equation (5.112), as found from the
assessment (4.100), turns out to be much greater than the actual values given by (5.116),
or (5.117). To get insight into the meaning of this fact, let us note that the singularity of
the type 1/(kl), as given by equation (5.110), comes from the integration in (3.89) over the
range of largex, |x| � l, i.e. only from the exponential tails of the potentialU(x) (5.109).
For this reason, the use of the relation (4.100) along with the expression (5.110) for the
error-control integral yields an assessment forδn that refers, in fact, to aset of potentials
that vanish exponentially as|x| → ∞ while being quite different at finite|x| 6 l. On the
other hand, the error termδn in equation (5.112) is sensitive to the detailed behaviour of
the functionU(x) in the region|x| 6 l. It is, therefore, quite possible that the actual value
of δn relative to a particular representative of the set of exponentially vanishing potentials,
happens to be much smaller than its estimate given by a general assessment with respect
to the set as a whole. That the singular behaviour (5.110) of the error-control integral, in
the range of smallkl, is not a spurious one, and happens not by chance, may be seen from
the analysis of the related tunnelling problem for the potential (5.109) withU0 > 0. In the
latter problem, the restrictionkl � 1, which is imposed by (5.110) along with the condition
E(kl) � 1 (4.101), was found to be quite essential for the semiclassical approach to be
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valid [25]. In other words, the particular concourse of circumstances that caused the term
δn to be exceptionally small in the bound-state problem for the potential (5.109), does not
occur in the related tunnelling problem for the same potential.

It should be noted, in this respect, that the rigorous mathematical theorems [8–10] on
the asymptotic validity of the Bohr–Sommerfeld formula, which establish the proof for the
fact that the correction termδn in (4.99) vanishes in the limit of large quantum numbersn,

δn = O

(
1

kn

)
asn → +∞

(
kn =

√
2m|En|

)
(5.118)

areessentiallybased on the assumption that the potentialU(x) tends to positiveinfinity as
|x| → ∞. Those theorems do not apply to smooth potentials thatvanish at infinity while
having long-range tails. For such potentials, the semiclassical approximation may not be
valid in the range of extremely low energies [27, section 46]. Indeed, it is readily seen
that, for the potential (5.109), the integral

∫
F 2/(8p5) dx that appears as the third term of

the WKB expansion in the square brackets of equation (46.11) in [27] has a singularity of
the type 1/(kl) askl → 0, i.e. just the same as the one given by (5.110). For this reason,
the corresponding WKB correction term cannot be neglected forkl � 1. This means that
quantum effects are essential for slow-moving particles in smooth potentials that vanish at
infinity.

6. Connection to the WKB approximation

Let us consider the positive real axis 06 x < +∞, with the origin x = 0 chosen as
specified in section 3.2.1. There is only one turning pointx = b in the interval [0,+∞). If
the condition E(n) � 1 (4.101) is fulfilled for some fixed integern > 0, then the correction
termh(+)n (x) on the right-hand side of (3.76) is negligibleuniformly with respect to all real
x ∈ [0,+∞). Therefore the particle’s bound stateψn(x) related to the given numbern may
be asymptotically represented, forx ∈ [0,+∞), by

ψn(x) ∼
[
ξ2

0 − ξ2

2p2(x)

]1/4

wn

(
ξ
√

2
)

(E(n) � 1, ξ2
0 = 2n+ 1) (6.119)

where ξ = ξ(x) is defined by (3.50a–c). If n is also largen � 1, then the use of the
uniform asymptotic form (2.8) along with (2.9) yields

wn

(
ξ
√

2
)

∼ √
π

[
2ζ

ξ2 − ξ2
0

]1/4

Ai(ζ ) (n � 1, x > 0) (6.120)

where the functionζ = ζ(x) is given by

2
3[ζ(x)]3/2 =

∫ ξ(x)

ξ0

(ξ2 − ξ2
0 )

1/2 dξ =
∫ x

b

|p(x)| dx (x > b) (6.121a)

2
3[−ζ(x)]3/2 =

∫ ξ0

ξ(x)

(ξ2
0 − ξ2)1/2 dξ =

∫ b

x

p(x) dx (0 6 x 6 b). (6.121b)

On substituting (6.120) in (6.119), we get

ψn(x) ∼ √
π

[−ζ(x)
p2(x)

]1/4

Ai(ζ ) (E(n) � 1, n � 1, x > 0). (6.122)

If, in addition ton � 1, the integrals on the right-hand sides of (6.121) are also large, then
the Airy function in (6.122) may be replaced by its own asymptotic form. As a result, the



7254 L V Chebotarev

formula (6.119) for the wave functionψn(x) reduces to simple WKB expressions

ψn(x) ∼ 1√
p(x)

cos

(∫ b

x

p(x) dx − π

4

)
+O

(
1

n

)
(
n � 1, 0 6 x < b,

∫ b

x

p(x) dx � 1

)
ψn(x) ∼ 1

2
√|p(x)| exp

(
−

∫ x

b

|p(x)| dx

)
+O

(
1

n

)
(
n � 1, x > b,

∫ x

b

|p(x)| dx � 1

)
in complete agreement with the known WKB connection formulae [27, section 47].

In section 2.2, it was shown that, asν → +∞, the parameterσν (2.23) tends to the
numberλ introduced in reference [10, p 397] relative to the Airy functions. Moreover,
it may be shown that, for largeν � 1, the function V+(x), which was defined above by
(3.75), reduces to the variational operatorVx,∞(H) introduced in [10, ch 11, section 3]
relative to the Airy functions, withH = H(x) being theerror-control function given by
equation (3.08) (withg = 0) in ch 11 of the same reference. Namely, we find

V+(x) = Vx,∞(H)+O

(
1

ν

)
(ν � 1, 0 6 x < +∞). (6.123)

As a result, for largeν � 1 andx ∈ [0,+∞), the assessments (3.65) and (3.66) obtained
above in section 3.2.4 go over into the estimates (3.11) of the basic theorem (3.1) in [10,
ch 11, section 3] which determines the validity of uniform asymptotic representations in
terms of the Airy functions in problems with asingle turning point and, in particular, the
error bounds for the formula (6.122).

7. Discussion and conclusions

The above analysis shows that the exact equation (4.99) for the energiesEn of bound
states reduces to the Bohr–Sommerfeld quantization formula if the condition E(n) � 1
(4.101) is fulfilled. This condition is essentially different from the conventional WKB
requirementn � 1, i.e. from the requirement that the Sommerfeld phase integral be large∫ b
a
p(x) dx � 1. Namely, the error-control integral may be small E(ν) � 1 even if the

parameterν is of the order of unity or less. This means that the Bohr–Sommerfeld formula
holds true with the accuracy of thepost-classical approximation[25], not merely with the
accuracy of the WKB approximation.

Potentials for which the Bohr–Sommerfeld quantization formula is extendible to lower
quantum numbers, are not at all exceptional ones. The sufficient condition E(n) � 1 (4.101)
for the Bohr–Sommerfeld formula to be extended to lower quantum numbersn ∼ 1, may
easily be satisfied for sufficiently smooth potentialsU(x) provided the second derivative
U ′′(xm), taken at the pointx = xm of local minimum of the functionU(x), does not vanish.
In particular, the condition E(n) � 1 may be fulfilled for all lower quantum numbers
n = 0, 1, 2, . . . for smooth potentials of finite rangel satisfyingh̄ � l

√
2m|U0|, with U0

being the typical value ofU(x) (cf theorem 3 in section 5.1). This means that Planck’s
constant ¯h should be small in comparison with the typical value of the classical action
associated with the given potential wellU(x). On the other hand, in view of the strong
singularity of the error-control integral atk = 0, caution should be used when applying the
Bohr–Sommerfeld formula to the range of extremely small energies if the potentialU(x)
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vanishes at infinity, in spite of the fact that this range may correspond to large values of the
Sommerfeld integral on the left-hand side of equation (4.99) and hence to large quantum
numbersn � 1.

The equation (4.99) isexact. This isnot the first-order quantization condition as obtained
within the phase-integral method. The fact is that the termδn in the formula (4.99) stands
for thecompletesum of all higher-order correction terms which are obtainable in the phase-
integral method. The estimate (4.100) pertains to this complete sum as a whole. What is
done in the higher-order expansion scheme [12] may be regarded as extracting successive
correction terms out of the quantityδn.

The estimate (4.100) is alsoexact. This means, first, that the relation (4.100) is valid
for any potentialU(x) that is continuous and thrice continuously differentiable on the real
axis. Secondly, the terms of all orders in powers of the error-control integral E(ν) (3.89)
are taken into account in the parameter%n = %n(εn) (4.96) exactly. And, finally, there is
no restriction upon the values of the phase integral

∫ b
a
p(x) dx, neither on the left-hand side

of the relation (4.99) nor in the quantity%n in the assessment (4.100).

Comparison with previous work.In [19, part B], Miller’s [28] notationU(b, x) andŪ (b, x)
for the parabolic cylinder functions was used. The relation of the results obtained in the
present paper, on the one hand, to those given in [19, part B], on the other hand, is
established as follows. Functions used in [19, part B] are given on the left-hand sides of
the formulae that follow, whereas corresponding quantities employed in the present work
are written on the right-hand sides of those formulae, i.e.

− u2f (u, a, x) ↔ p2(x) g(u, a, x) = 0 ζ
√
u ↔ ξ α

√
u ↔ ξ0

b ↔ −ν − 1
2 ρ(b) ↔ cν

1

u
ψ(u, a, ζ ) ↔ (ξ ′)2R(x)

√
π

2
l1(b) ↔ σν

1√
2u
V0,ζ2(F ) ↔ V+(0) �(x) ↔ | 1

4x
2 − ν − 1

2|1/2

U(b, x) ↔
(

2

π

)1/4

01/2(ν + 1)wν(x) Ū(b, x) ↔
(

2

π

)1/4

01/2(ν + 1)uν(x).

(7.124)

The connection formulae (2.5) are related to equations (5.9) in [19] through (7.124).
The Taylor series expansions (2.6) are new.
The uniform asymptotic forms (2.8) have been derived by the method of Langer [29],

independently of those given in [22]. The equivalence of (2.8), on the one hand, and the
formulae (5.12) and (5.13) in [19], on the other hand, may be verified by means of an
appropriate change of variables.

The basic interval considered in the work [19] was the positive real axisζ > 0. For
this reason, the auxiliary functions in [19, part B] were not defined for negativeζ < 0.
As a consequence, the statements, as well as the assessments (6.2) and (6.6), of the basic
theorem I in [19] referonly to the positive real axisζ > 0.

The extension of the basic representations (2.10) to the negative real axis in section 2.2.2
is new, and so are the connection formulae (2.27) and (2.28) for the auxiliary functions
Mν(x) andθν(x).
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On thepositivereal axisζ > 0, the auxiliary functions used in the two works are related
by

M(b, x) ↔
(

2

π

)1/4

01/2(ν + 1)Mν(x) N(b, x) ↔
(

2

π

)1/4

01/2(ν + 1)Nν(x)

E(b, x) ↔ Eν(x) θ(b, x) ↔ π

2
− θν(x).

(7.125)

The uniform asymptotic representations (2.20)–(2.22), and (2.37), for the auxiliary
functions are new.

The definition (2.23) for the basic parameterσν , as well as its properties and its
evaluation as a function ofν, are new. In particular, the parameterσν is shown to be
bounded in magnitude even in the limitν → +∞, while �(x) = O(x), unlike l1(b) given
by equation (6.14) in [19]. Moreover, the limiting valueσ∞ (2.25) coincides with the
numberλ introduced in [10, p 397] relative to the Airy functions.

The definition and the properties of the parameterµν in section 2.3 are new.
The definition of the amplitude function in section 2.4 is new.
For finite-range potentialsU(x) in quantum mechanics, the large parameteru in [19]

may be identified withk0l (5.107).
The explicit bounds (4.100) and (4.102) for the error term in the Bohr–Sommerfeld

formula, in the case of twodistinct real turning points, are sharper than theO-term in the
formula of [19, section 6, p 162]. On the other hand, the results of [19] show that, through
an appropriate choice of the function�(x), the estimate (4.100) may be made, under certain
conditions, non-singular even in the limitν → −1/2, when the two turning points coalesce.

In summary, the basic relations in the present work are simplified and extended, while
the bounds are sharpened, with respect to those obtained in [19].
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